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Abstract
Using a simple mean-field density functional approach we investigate the
adsorption of a binary fluid mixture of repulsive Gaussian core particles at
a repulsive planar wall. For certain choices of wall–fluid potential we find a
first-order wetting transition, and the accompanying pre-wetting line, whereby
the fluid phase rich in the larger species completely wets the interface between
the wall and the fluid phase rich in the smaller species. We show that in the
complete wetting regime the film thickness diverges as l ∼ −l0 ln(x − xcoex),
where (x − xcoex) is the deviation in concentration x of the smaller species
from the bulk binodal, for all the (short-ranged) wall potentials that we have
considered but the amplitude l0 depends on the precise details of these potentials.

1. Introduction

Recently there has been much interest in the statistical mechanics of soft-core particles [1].
A particularly simple example of a soft-core fluid is the Gaussian core model (GCM) [2]
where the particles interact via a repulsive Gaussian pair potential. A Gaussian serves as a
good approximation for the effective interaction between the centres of mass of two polymer
chains in an athermal solvent1 [1, 4–7]. At high densities the equilibrium pair structure of the
GCM is described well by a simple random-phase approximation and the thermodynamics by
a mean-field equation of state [1, 7–9]. The reason the GCM behaves as a ‘mean-field fluid’
is that as the density, ρ, increases, the mean interparticle separation ρ−1/3 � R, the size of
the particles, and in the limit ρR3 → ∞ a central particle interacts with a very large number
of neighbours—the classic mean-field situation. In an earlier paper [10] we investigated the
bulk phase behaviour of a binary mixture of repulsive Gaussian core particles using the simple
mean-field approach suggested in [7]. For certain choices of energy and size parameters the
binary mixture exhibits fluid–fluid demixing. By constructing the density functional which
generates the random-phase approximation for the pair direct correlation functions c(2)ij (r) of
the bulk mixture, we determined the Fisher–Widom (FW) line [11] which denotes the line
in the bulk phase diagram where the asymptotic decay of the total pair correlation functions
hij (r) crosses over from exponentially damped oscillatory form to monotonic decay. The FW

1 A Gaussian effective potential for polymers was first proposed in [3].
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Figure 1. The phase diagram for a mixture of Gaussian particles, equivalent to a mixture of two
polymers with length ratio 2:1. ρ is the total density and x is the concentration of the smaller
species 2. The dashed curve denotes the FW line where the asymptotic decay of the bulk pairwise
correlation functions crosses over from oscillatory to monotonic. The solid curve in the bottom
right corner denotes a line of crossover from asymptotic oscillatory decay with a certain wavelength
to oscillatory decay but with a different wavelength [10]. The inset shows a magnification of the
pre-wetting line, meeting the binodal (solid curve) tangentially at the wetting point, for a wall
potential given by equation (8) with λ/R11 = 1. The lower point denotes the pre-wetting critical
point. The path in the phase diagram marked C is at fixed ρR3

11 = 7.0 along which the density
profiles in figure 3 are calculated. The path marked D is at fixed ρR3

11 = 8.8 along which the
profiles in figure 2 are calculated. This path intersects the pre-wetting line.

line has two branches. One intersects the binodal on the side rich in species 1 and the other
intersects the binodal on the side rich in species 2 [10]; a specific example is shown here in
figure 1. We also found a new line, analogous to the FW line, but now denoting the locus of
crossover in the asymptotic decay of the pair correlation functions from damped oscillatory
with a certain wavelength to damped oscillatory with a different wavelength. This is also
illustrated in figure 1. The same density functional was used to investigate the one-body
density profiles ρ1(z) and ρ2(z), of species 1 and 2 at the free interface between coexisting
fluid phases. For certain states removed from the critical point, ρ1(z) and ρ2(z) exhibit damped
oscillations on both sides of the interface [10]. The occurrence of the oscillatory profiles was
accounted for in terms of general arguments [12] for the asymptotic decay of bulk pairwise
correlations; the onset of oscillations is directly linked to the location of the FW line.

This paper is concerned with the adsorption of the binary mixture of Gaussian particles,
treated within the same density functional approximation, at a purely repulsive planar wall.
We show that for certain choices of wall–fluid potentials, a first-order wetting transition occurs
from partial to complete wetting of the interface between the wall and the fluid phase rich in
species 2 by the fluid phase rich in species 1. The transition is induced by decreasing the total
density ρ of the bulk mixture. Within the complete wetting regime the thickness of the wetting
film diverges logarithmically with (x − xcoex), where x denotes the concentration of species 2
and xcoex its value at bulk coexistence, for all the (short-ranged) wall–fluid potentials that we
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investigate. However, the length scale associated with the film growth depends sensitively on
the details of these potentials. We also find evidence for a critical wetting transition when the
decay length of the wall–fluid potential is particularly short.

2. The model mixture and choice of wall–fluid potentials

The GCM binary mixture is specified by the pair potentials between particle species i and j .
These are given by the Gaussian form

vij (r) = εij exp(−r2/R2
ij ) (1)

where εij > 0 denotes the energy and Rij , which is approximately the radius of gyration of the
polymer, determines the range of the ij interaction; 1 � i, j � 2. We employ a simple mean-
field form for the intrinsic Helmholtz free-energy functional of the inhomogeneous mixture:

F[{ρi}] = Fid[{ρi}] + 1
2

∑
ij

∫
dr1

∫
dr2 ρi(r1)ρj (r2)vij (|r1 − r2|) (2)

where ρi(r) is the average one-body density of species i and Fid is the ideal-gas part
of the free-energy functional. As described in [10], the functional defined by equ-
ation (2) generates the random-phase approximation for the pair direct correlation functions:
c
(2)
ij (r1, r2) = c

(2)
ij (|r1 − r2|) = −βvij (|r1 − r2|), for all inhomogeneities. β = (kBT )

−1 is
the inverse temperature. In the present study we work with the grand potential functional

�V [{ρi}] = F[{ρi}] −
∑
i

∫
dr [µi − Vi(r)]ρi(r) (3)

where Vi(r), i = 1, 2, is the external potential acting on species i and µi is the chemical
potential of that species. An obvious choice of wall–fluid potential is a Gaussian wall with a
form analogous to (1):

βVi(z) =
{ ∞ z � 0
Ai exp[−(z/Rii)

2] z > 0
(4)

where z is the distance from the wall and Ai > 0 is an amplitude and we investigated the
wetting behaviour of such a model system. Recall that complete wetting by a liquid in a
typical one-component fluid may occur at an attractive wall when the bulk gas phase is close to
coexistence. Then a film of the liquid phase is adsorbed at the wall whose thickness diverges
on approaching coexistence [13]2. For the GCM binary fluid we sought wetting at the wall by
one of the demixed fluid phases. More specifically, the bulk fluid phase was chosen to be that
rich in species 2, the smaller particle, (see figure 1) and we sought complete wetting by the
fluid phase rich in species 1 by calculating the density profiles ρi(z) and adsorption

�i =
∫ ∞

0
dz (ρi(z) − ρb

i ) (5)

where ρb
i = ρi(∞) is the bulk density of species i, on paths corresponding to decreasing

x towards xcoex (the bulk binodal point) at fixed total density ρ. The profiles are obtained
by minimizing the functional (3). With the wall potential given by (4) and amplitude ratios
A2/A1 which are not far removed from unity, one does not find a transition to complete wetting.

2 A first-order wetting transition and the accompanying pre-wetting were first obtained by Cahn and by Ebner and
Saam in 1977.
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However, if one chooses the wall potentials to be of the same Gaussian form, but now with the
same decay length λ for both species:

βVi(z) =
{ ∞ z � 0
Ai exp[−(z/λ)2] z > 0

(6)

one does find a transition to complete wetting. By making the decay length of the wall–fluid
potential the same for both species, one has set the decay length measured on the scale of the
smaller of the two species of particles to be longer ranged. The result is an effective attraction
between the wall and the larger of the two species which ensures that the smaller species of
particles is depleted more strongly from the wall than is the larger. This attraction is in spite of
the fact that all the intrinsic particle–particle and wall–particle potentials are repulsive. (Note
that although the potentials of equation (4) also generate an effective attraction, this appears
to be insufficiently strong to drive the transition.) As a consequence of this attraction, one
finds that if the bulk fluid is a phase poor in the larger species, but is near to phase separation,
then a wetting film of the coexisting phase, rich in the larger particles, may grow on the wall
provided ρ is sufficiently low. Complete wetting is not limited to this particular form of the
wall potential. For example, an exponentially decaying wall potential of the form

βVi(z) =
{

∞ z � 0

Ai exp[−z/λ] z > 0
(7)

also yields complete wetting. The effective attraction has the same origin as for equation (6).
The studies of Louis et al [5, 7] have considered a wall–fluid potential of the form

βV (z) = exp(−z/R)/(z/R) for the one-component Gaussian core fluid. This form was
motivated by the effective wall potentials obtained from inverting Monte Carlo simulation
density profiles of self-avoiding-walk polymers at a hard wall, i.e. the density profile of the
Gaussian core fluid at a wall potential of the form βV (z) = exp(−z/R)/(z/R) mimics the
polymer centre of mass profile at a hard wall. The obvious generalization to the two-component
fluid is to set βVi(z) = exp(−z/Rii)/(z/Rii). With this choice of wall potential one does not
observe complete wetting; the situation is the same as for the Gaussian wall potential of
equation (4). Not surprisingly, if one chooses the wall potentials to be of the same form but
with both having the same decay length λ:

βVi(z) =
{

∞ z � 0

Ai exp[−z/λ]/[z/λ] z > 0
(8)

withAi ∝ Rii , then one observes complete wetting for sufficiently low ρ, approaching the bulk
critical (consolute) point. For those models where complete wetting occurs, one finds that as
one moves up the binodal, away from the critical point, there is a ‘wetting point’, above which
partial wetting occurs; one finds a thin layer, at most two particle diameters thick, adsorbed at
the wall. The location of the wetting point on the binodal is dependent on the details of the
wall potential. As the transition is (usually) first order there is a pre-wetting line descending to
lower ρ from the wetting point. This curve is a tangent to the binodal at the wetting point, and
ends in a critical point away from the binodal; see the inset to figure 1. The pre-wetting line is
a line of first-order surface phase transitions [13]. For a path in the phase diagram intersecting
the pre-wetting line, the film thickness grows very slowly until the pre-wetting transition is
reached, where there is a jump in the film thickness. Inside the pre-wetting line the wetting
film thickness increases and finally diverges at the binodal. For a path which lies below the
pre-wetting critical point, the film thickness increases continuously; there is no jump.
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3. Results of calculations

3.1. First-order wetting transition

We illustrate the wetting characteristics for a particular choice of the parameters specifying
the binary GCM and for a given choice of the parameters specifying the wall potential (8).
Following [7, 10] we chose the pair potential parameters ε11 = ε22 = 2kBT , ε12/ε11 = 0.944,
R22/R11 = 0.665 and R12/R11 = 0.849, which is equivalent to a mixture of two polymers
with length ratio 2:1. This binary mixture demixes at sufficiently high total densities,
ρ = ρ1 + ρ2, with a lower critical point at (xc, ρcR3

11) = (0.70, 5.6) (see figure 1), where
x is the concentration of species 2, the smaller particles [10]. Figure 1 is a typical binary GCM
phase diagram. We have marked on it the wetting point and the pre-wetting line calculated
for the wall potential given by equation (8), with λ/R11 = 1, and amplitudes A1 = 1 and
A2 = R22/R11 = 0.665. The wetting point is at (x, ρR3

11) = (0.957, 8.93). Descending from
the wetting point is the pre-wetting line ending in a critical point at (x, ρR3

11) = (0.949, 8.50).
This line is very short (in ρ) and lies very close to the binodal. The wetting point and the
pre-wetting line are determined by analysing the density profiles and the adsorption �1; the
latter exhibits a discontinuous jump at the pre-wetting transition.
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Figure 2. The density profiles of species 1, the larger particles, adsorbed at a wall with external
potential given by equation (8) with λ/R11 = 1, calculated along a path of constant total density,
ρR3

11 = 8.8, i.e. path D in figure 1 (from left to right the profiles refer to x = 0.955, 0.9547,
0.9546, 0.9545, 0.9544, 0.9543, 0.9542 and 0.95419, where x is the concentration of species 2.
xcoex = 0.954 184 31). The thickness of the adsorbed film increases slowly as x decreases until the
pre-wetting transition is reached, when there is a jump between x = 0.9546 and 0.9545 (marked
J) in the profile, and then the thickness of the adsorbed film increases continuously as x → x+

coex,
indicating complete wetting. The inset shows the density profiles of species 2 for the same values
of x.

Figure 2 displays some typical density profiles for states approaching the binodal, along
path D in figure 1, at a constant bulk density ρR3

11 = 8.8 intersecting the pre-wetting line, and
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Figure 3. The density profiles of species 1, the larger particles, adsorbed at a wall with external
potential given by equation (8) with λ/R11 = 1, calculated along a path of constant total density,
ρR3

11 = 7.0, i.e. path C in figure 1 (from left to right the profiles refer to x = 0.99, 0.95, 0.9, 0.89,
0.886, 0.8855, 0.885 446, 0.885 442 and 0.885 4416, where x is the concentration of species 2.
xcoex = 0.885 441 572). The thickness of the adsorbed film increases continuously as x → x+

coex,
indicating complete wetting. The inset shows the density profiles of species 2 for the same values
of x. Note that species 2 is depleted from the region adjoining the wall.

figure 3 displays some typical density profiles for states along path C in figure 1, at a constant
bulk density ρR3

11 = 7.0. Since this lower density lies below that of the pre-wetting critical
point, the wetting film grows continuously as x is decreased towards xcoex. In figure 4(a)�1, the
adsorption of species 1, corresponding to the density profiles in figure 3, is plotted against the
logarithm of the deviation |x − xcoex|, from coexistence. In the limit x → x+

coex, �1 as defined
by equation (5), is proportional to the thickness l of the wetting film, i.e. �1 ∼ l(ρ

b,A
1 − ρ

b,B
1 ),

where ρ
b,A
1 is the bulk coexisting density of species 1 in phase A, rich in species 1, and ρ

b,B
1

is the same quantity in phase B, poor in species 1. �1, and therefore l, increase linearly with
− ln(x − xcoex).

In figure 4(b)�1 is plotted along the constant-density path ρR3
11 = 8.8 (path D in figure 1),

corresponding to the density profiles in figure 2, which intersects the pre-wetting line. The
jump in �1 occurs at the intersection with the pre-wetting line. As x → x+

coex, �1 and l diverge
logarithmically.

These results, along with those for several other choices of potential parameters, point
to a classic first-order wetting scenario. The general trend is: the larger the range λ in
equation (8), the further the wetting point is from the consolute point. Reducing λ shifts
the wetting point towards the consolute point and for sufficiently small values it appears that
there can be a crossover to a critical wetting transition. For example, when λ/R11 = 0.125, and
amplitudes A1 = 1 and A2 = R22/R11 = 0.665, the wetting point moves well below that for
λ/R11 = 1.0, to (x, ρR3

11) = (0.88, 6.9), and there is no indication of a pre-wetting transition.
The adsorption �1 appears to diverge continuously (as − ln(ρ − ρw), where ρw is the value
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Figure 4. Plots of the adsorption of species 1, �1, at a wall with external potential given by
equation (8) with λ/R11 = 1, along two paths of constant total density as a function of the logarithm
of the deviation from bulk coexistence, ln(x − xcoex). Panel (a) refers to the path ρR3

11 = 7.0,
labelled C in figure 1, corresponding to the density profiles in figure 3, which lies below the pre-
wetting critical point. Panel (b) refers to the path ρR3

11 = 8.8, labelled D in figure 1, corresponding
to the density profiles in figure 2, which intersects the pre-wetting line. The jump in �1 occurs at
the intersection. On approaching the binodal, �1 increases linearly with − ln(x−xcoex) in both (a)
and (b).

of the total density at the wetting transition) as we reduce ρ along the binodal. Further work
is required to determine how crossover to critical wetting depends on λ and whether other
choices of wall–fluid potential will also lead to critical wetting. Note that crossover to critical
wetting with decreasing wall decay length was observed in a generalization of the Sullivan [14]
model for a one-component fluid with Yukawa fluid–fluid attraction and exponential wall–fluid
attraction [15, 16].

3.2. Thickness of the wetting film

In this subsection we focus on the details of how the thickness l of the wetting film diverges
for different choices of wall–fluid potentials. Recall that in the mean-field description, as
used in the present study, of wetting for a typical one-component fluid whose interparticle
potential is short ranged (potential with finite support, Yukawa, exponential or faster decay), l
diverges as −l0 ln�µ, where �µ = (µcoex − µ) is the difference in chemical potential from
bulk coexistence, provided the wall–fluid potential is also short ranged [13]. The prefactor
l0, i.e. the length scale determining the logarithmic growth, depends in a subtle way on the
relative ranges of the wall–fluid and fluid–fluid interparticle potentials. If the former decays
exponentially with distance from the wall, one must compare the decay length with ξw, the
bulk correlation length of the (liquid) phase which is wetting [13, 16]. The amplitude l0 will
be determined by which length is longer. On the other hand, for Gaussian wall–fluid attraction
or for a wall–fluid potential with finite support, one expects the only relevant length scale to
be ξw. How does this phenomenology carry over to the present situation of the binary GCM
near a wall?

We begin by noting that for all models where we find complete wetting, the calculated
adsorption�1 and film thickness l diverge as − ln(x−xcoex). For the case of Gaussian wall–fluid
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potentials, equation (6), we find that regardless of the wall decay lengthλ, l ∼ −ξw ln(x−xcoex),
i.e. the amplitude is ξw, the bulk correlation length in phase A, rich in species 1, which is wetting
the wall–phase B interface. It is important to define the bulk correlation length ξ of a binary
mixture. This is the exponential decay length describing the (common) asymptotic decay
of the three partial pairwise total correlation functions hij (r). ξ can be obtained from the
poles of the Fourier transform of hij (r) [12] (a more detailed description of the calculation
of poles in the GCM can be found in [10]). In Fourier space the Ornstein–Zernike equations
for hij (r) are ĥij (q) = Nij (q)/D(q), where ĥij (q) is the three-dimensional Fourier transform
of hij (r) and Nij (q) and D(q) are linear combinations of the (Fourier transformed) pairwise
direct correlation functions c(2)ij (r). The poles occur when D(q) = 0, and therefore all three

ĥij (q) have the same set of poles: qn = ±α1 + iα0. It is the pole with the smallest imaginary
part α0 that dominates the decay of hij (r) as r → ∞ and it is this pole that determines
the bulk correlation length: ξ = 1/α0. For the path labelled C in figure 1, the coexisting
(wetting) phase A is at (x, ρR3

11) = (0.458, 5.30) for which ξw/R11 = 0.905. Note that the
FW line and the other line bottom right in figure 1 are the lines in the bulk phase diagram
where crossover occurs between different types of pole dominating the asymptotic decay of
hij (r) [10].

A different scenario occurs for a wall potential of the form given by equation (7). Now
we find that the wetting film thickness still grows logarithmically as a function of (x − xcoex),
but the amplitude l0 is no longer necessarily the bulk correlation length of the wetting phase,
ξw. Rather we find that l ∼ −l0 ln(x − xcoex) where l0 depends on λ, the wall potential decay
length. When λ < ξw, l0 = ξw, but when λ > ξw, l0 = λ. The variation of l0 with λ for both
types of wall is shown in figure 5.

These results can be accounted for by considering the following expression for the surface
excess grand potential per unit area (or effective interface potential) of a GCM subject to a
wall potential whose decay is exponential, equation (7):

�s(l; x) = l[ωb,A − ωb,B] + γw,A + γA,B + ae−l/ξw + be−l/λ + O(e−2l/ξw , e−2l/λ) (9)

where γw,A is the surface tension of the wall–phase A interface, γA,B that of the free A–B
interface and a and b are coefficients that depend on ρ [13, 16]. Equation (9) is valid for a
complete wetting situation; minimization of �s with respect to l yields the equilibrium film
thickness l for a given undersaturation3 (x−xcoex). ωb,B is the grand potential per unit volume
in bulk phase B at given chemical potentials µ1 and µ2, while ωb,A is the corresponding
quantity in phase A at the same chemical potentials. To lowest order in the chemical potential
deviations:

[ωb,A − ωb,B] � (ρ
b,A
1 − ρ

b,B
1 )�µ1 + (ρ

b,A
2 − ρ

b,B
2 )�µ2 (10)

where, as previously, ρb,A
i denotes the bulk coexisting density of species i in phase A etc.

Since �µi ≡ (µi − µi,coex) ∝ (x − xcoex), to lowest order, it follows that the first term on
the right-hand side of equation (9) is proportional to (x − xcoex). If λ < ξw, the term in
exp(−l/ξw) dominates and minimization yields l ∼ −ξw ln(x − xcoex), whereas if λ > ξw,
the other exponential dominates and l ∼ −λ ln(x − xcoex). When the wall potential is a
Gaussian, equation (6), the term in exp(−l/λ) is absent from �s and minimization yields
l ∼ −ξw ln(x − xcoex) for all λ.

3 Note that equation (9) is appropriate for fluid states where the wetting phase (A) at bulk coexistence lies on the
monotonic side of the FW line. This is the case for path C in figure 1. If the wetting phase lies on the oscillatory side
of the FW line, the term in exp(−l/ξw) should be multiplied by a factor of cos(α1l + φ), where α1 is the real part of
the dominating pole and φ is a phase factor—see [17].
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Figure 5. The prefactor l0 of the wetting film thickness (l ∼ −l0 ln(x − xcoex)) versus the wall
potential decay length λ. In all cases the density profiles were calculated along the constant-density
path ρR3

11 = 7.0 (path C in figure 1). For the Gaussian wall (♦), l0 = ξw, the bulk correlation
length of the wetting phase, independent of λ. For the exponential wall (�), l0 = ξw for λ < ξw
and l0 = λ for λ > ξw. For the wall potential βVi(z) = Ai exp(−z/λ)/(z/λ), z > 0 (◦), l0 = ξw
for λ < ξw (see footnote 4) but has a complex variation for λ > ξw. The results for the three
choices of potential do not appear to depend on the amplitudes Ai .

Equation (9) is not appropriate to the wall potential given by equation (8), i.e. the damped
exponential. Although l diverges logarithmically for all choices4 of λ and l0 = ξw for λ < ξw,
when λ > ξw, l0 is equal to neither ξw nor λ, but is a monotonically increasing function of
λ; see figure 5. For λ/R11 � 5, l0 increases linearly with λ but with the slope < 1. This
implies that the relevant term in equation (9) is not of the form b exp(−l/λ). Rather it should
be b′ exp(−l/λ′), where the length λ′ � 0.7λ. Whether such a form for�s(l; x) can be derived
by the methods of [16] starting from the full binary mixture density functional, equation (2),
remains to be seen.

4. Concluding remarks

We have shown that the binary GCM subject to purely repulsive, short-ranged, wall–fluid
potentials can exhibit a first-order wetting transition, with the accompanying pre-wetting,
similar to that found in systems where the fluid–fluid and wall–fluid potentials are explicitly
attractive. Our results illustrate the ubiquity of wetting transitions and related interfacial
phenomena. The wetting transition in the present case is driven by an effective attraction
between the wall and the larger species of Gaussian core particle, which arises from the fact
that the wall potential is longer ranged on the scale of the smaller particles than on the scale of
the larger, leading to strong depletion at the wall of the smaller species. Generating sufficient

4 We do not include very small values of λ where the wetting point might lie below ρR3
11 = 7.0.
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effective attraction between the wall and one of the particle species for a wetting transition to
be observed is not only achieved by setting the wall decay length to be the same in both wall
potentials. One could achieve sufficient effective attraction between the wall and species 1 by
setting the amplitude, A2 (see equations (6)–(8)), of the potential acting on the smaller species
2 to be much larger than A1. We also showed that the precise form of the decay of the wall
potential determines the amplitude l0 of the thickness, l, of a wetting film. For an exponentially
decaying wall–fluid potential with decay length λ, equation (7), l0 is determined by the larger of
ξw, the bulk correlation length in the wetting phase, and λ; i.e. the effective interface potential
equation (9) provides an accurate description of the relevant length scales. However, for a wall
potential of the form (8), a new length scale may enter which is neither ξw nor λ.

Our results are based upon what is arguably the simplest density functional theory, namely
the mean-field functional (2), that one might contemplate for any binary fluid mixture. That
such a simple theory should predict such rich wetting behaviour is pleasing, but we should
enquire how our results might be changed by utilizing more sophisticated functionals. The
study of Louis et al [7] indicated that for a one-component GCM near a repulsive wall of
the type (8), the mean-field functional yields density profiles close to those from a functional
which generates the HNC closure of the wall–particle Ornstein–Zernike equation. (Recall
that for the bulk structure of the one-component GCM, the HNC closure gives results almost
indistinguishable from simulation data [7].) For the binary GCM there are, as yet, no simulation
or theoretical results against which we can test those of the present functional. However, for
the high-total-density situations that we consider here there are good reasons to expect [10]
the random-phase approximation and the functional (2) to be reliable for this soft-core fluid.
We speculate that the location of the wetting point might depend sensitively on the details of
the free-energy functional but that the gross features of the interfacial phase behaviour should
be captured by the simplest treatment.

The theory that we have presented is strictly mean field; capillary-wave fluctuations are
omitted in this as well as in other, more refined, density functional approaches. There is a
rich phenomenology associated with fluctuations, in particular for systems with short-ranged
forces [13, 16, 18]. It would be of some interest to examine fluctuation effects in the present
model of a binary mixture, especially for those choices of parameters where a critical wetting
transition occurs5.

Finally, we note that in recent studies of a model colloid–polymer mixture at a hard wall,
Brader et al [19] found layering transitions at points on the binodal, above the wetting transition
point. Although the binary GCM exhibits oscillatory density profiles at the free fluid–fluid
interface [10], similar to those found in [19], we do not find any layering transitions in the
present model, i.e. the transition from partial to complete wetting is not accompanied by the
precursor layering. Layering transitions are associated with many-body terms in the effective
one-component Hamiltonian for the colloids [19]. Analogous terms are not expected in the
present case.
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5 In treatments based on an effective interface potential, it is the dimensionless parameter ω = (4πβγA,Bξ
2
w)

−1,
where γA,B is the surface tension, which determines the strength of fluctuation effects [13,18]. For the present model
it might be possible to vary ω over a large range by tuning the parameters of the potentials.
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